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The problem of wave propagation in a biaxial graded-index fiber with circular symmetry is

Abstract

considered. The problem is formulated in terms of four first-order differential equations for
the tangential components of the electric and magnetic fields. A general solution method
for solving systems of differential equations is presented. This solution method is then used
to solve the system of equations for a particular example of a biaxial graded-index fiber.

Numerical results for the propagation constant in the fiber are also given.

I. Introduction

The optical ﬁb.er has become a much studied transmission system due to its property of
wave guidance with low loss. In recent years it has been shown that introducing anisotropies
into the dielectric medium of the fiber produces several interesting features, such as control
of power flow and reduction of peak attenuation near cutoff.

Typically the analysis of wave propagation in a cylindrical dielectric waveguide such
as an optical fiber is performed using a wave equation formulation. For the simple case
of a step-index fiber a detailed analysis, including dispersion relations, cutoff conditions
and mode designations, is presented by Snitzer [1]. Paul and Shevgaonkar [2] present a

similar analysis for a uniaxial step-index fiber and also perform a perturbation analysis to
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determine the modal attenuation constants. These are the only two cases for which exact

solutions are known.

For inhomogeneous fibers no exact solutions are known. For the case of an isotropic
graded-index fiber several approximate analytic solution methods are available. These ap-
proximate solutions all share the common assumption that the fiber is infinite in extent.
In addition if the permittivity is assumed to vary slowly over the distance of one wave-
length the wave equation formulation simplifies to an associated scalar wave equation. If
the permittivity profile is parabolic the solution to the scalar wave equation can be written
in terms of either Laguerre polynomials [3] if cylindrical coordinates are used or Hermite
polynomials [4] if rectangular coordinates are used. For arbitrary permittivity profiles the
scalar wave equation can be solved using the well known WKB solution method [5], [6]. For
a parabolic permittivity profile all three solution methods give identical results. Under the
assumption that the fields are far from cutoff Kurtz and Streifer [7], [8] have shown that a
solution to the full vector problem can be written in terms of either Laguerre polynomials if
the permittivity profile is quadratic or asymptotically in terms of Bessel and Airy functions
for arbitrary permittivity profiles which decrease slowly and monotonically. A comparison
of the vector and scalar solutions for the quadratic permittivity profile implies the vector
modes can be obtained by simply renumbering the scalar modes [9]. Using the renumbered
scalar modes as a basis Hashimoto [10] and Ikuno [11] have developed two slightly differ-
ent iterative methods which can be used to solve the full vector problem for an isotropic

graded-index fiber.

An alternate formulation of the problem is to write the four first-order differential
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equations for the tangential field components as a first-order matrix differential equation.
For a step-index fiber with uniaxial core and cladding Tonning [12] has shown that the
matrix formulation can be solved exactly in terms of Bessel functions. For isotropic graded-
index fibers with arbitrary permittivity profiles Yeh and Lingren [13) have indirectly used
the matrix formulation in developing a numerical solution method based on the concept
of stratification. Using the concept of tramsition matrices Tonning [14] has developed a
numerical procedure which can be used to solve the matrix differential equation for isotropic

graded-index fibers.

II. Formulation of the Problem

Consider a circularly symmetric optical fiber with the geometry shown in Figure 1. In the
core, 0 < p < a, the permittivity is given by €o€r(p) where €p is the permittivity of free space
and & (p) is the relative permittivity tensor of the core and is a function of p only. In the
cladding, a < p < b, the permittivity is given by €oe. where ¢ is the relative permittivity
of the cladding and is assumed to be constant. In both the core and the cladding the
permeability is po, the permeability of free space. For convenience, the external radius of
the cladding, b, is assumed to be sufficiently large in comparison to the radius of the core,
a, so that it is not necessary to impose boundary conditions at the air-cladding boundary.

Consider the case where the relative permittivity tensor in the core is given by

eifp) O 0
@(p)={ 0 () O ; (1)
0 0 e3(p) 0.2

where €;(p), €2(p) and e3(p) are the relative permittivities in the p, ¢ and z directions
respectively. In general the relative permittivities are arbitrary functions of p. However,

the choice of cylindrical coordinates requires € (p) and €2(p) be equal at p = 0.
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For time harmonic fields in a source free region, Maxwell’s equations can be written as

V x H = jweoe, E, (2a)

V X E = —jwuoH, (20)

where w is the angular frequency. If the z and ¢ dependence of the fields is given by

¢—iBr+ime

where £ is the longitudinal wavenumber and m is any integer, then for cylindrical coordi-

nates Maxwell’s equations can be written in component form as

—r,—r:-H, + BHy = weoer Ep, (3a)
. dH, i
-jBH, - I jweoe2 By, (3b)
_ P
1d jm .
;d—p(pH¢) - TH,, = ]w€o€3Ez, (3C)
m
;—E, + BEy = —wpoH,, (3d)
. dE, .
JBE, + 5 = jwpoHg, (3e)

—jwpoH. (3f)

1d jm
-2 (pE,) - LZE

The remainder of the problem can now be formulated in two different ways. If the transverse
~ field components E,, Es, H, and Hy are eliminated from egs. (3) we obtain a pair of
coupled second-order differential equations for the longitudinal field components E, and
H,. Alternately, if the radial components E, and H, are eliminated we obtain a system of
four first-order differential equations for the tangential field components E,, E4, H. and

H,.
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First consider the coupled wave equation formulation. It is convenient to define a
normalized magnetic field h = ZoH where Zo = +/po/€o is the impedance of free space.

Solving egs. (3a), (3b), (3d) and (3e) for E,, Eg, h, and he gives

- | jkoeld‘ﬁ‘]‘ (4b)
- 7:27 [";ﬁ dd}:], (4).
b= o [T, - 85| (4d)

where ko = w./€opo is the free space wavenumber and k2, = kien(p) - 8%, n = 1,21s
the transverse wave number. Substituting the expressions for E,, Eg, hy and hy given by
eqs. (4) into egs. (2c) and (2f) and making a change of variable from p to a normalized

radius 7 = p/a results in the following pair of coupled differential equations for E, and h,

E" + fi(r)EL + A2gi(r)E; = pa(7)R; + g2(r)he, (5a)

hY + fa(r)h, + A’ga(r)he = pi(r)E; + qi(r) e, (5%)

where ' = d/dr, A? = (koa)?, x = B/ko and

. 1 k2ei(r) .

A0 =2 Sat) - =) (6
1 e(n)

)= 1 o (6%)
el oy -kl - mes(r) ¢

gl(r) - 61(7‘)[ 1( ) ][1 A2€3(T‘)[€2(1‘) _ nz]rz]' (6 )

92(r) = [e2(r) - "2][1 - Az[fl(:;l_, Kz],.z} (6d)

r | elr)-«?

pu(r) = jmk [61(") - fz(")]’ (6e)



plr) = - 2 [l a )] (61)

a(r)r| elr)—x?
at)= - 17 2] (69)
_ jmk e1(r)
o) = 25 a3 2 (6

The equations for E, and h, become uncoupled for three particular cases. For the so-called
meridional modes m is equal to zero and therefore from eqs. (6e,f,g:h) so are the functions
p1(r), p2(r), 1(r) and g(r). For isotropic and uniaxial step-index fibers ¢; and ¢ are equal
and constant and again from egs. (6e,f,g,}h) the functions p1(7), p2(r), q1(r) and g(r) are
zero.

In general a solution of egs. (5) for arbitrary permittivity profiles is not possible. It
is possible to obtain a fourth-order differential equation for either E, or h, by eliminating
h, or E, from eqs. (5). However, the complexity of the resulting equation precludes the
determination of a solution. For meridional modes a direct series solution of the uncoupled
equations is possible. However, due to the poles in the functions fi(r) and fa(r) the resulting
series solution will not be convergent for the entire core region. An exact solution of egs. (5)
is possible only for the case of a step-index fiber. For either an isotropic or uniaxial step-
index fiber the coupled equations simplify to Bessel’s differential equation.

In order to find an analytic solution of egs. (5) some assumptions must be made. First,
the cladding is neglected and the core is assumed to extend to infinity. This eliminates the
need to impose boundary conditions on the solution at the core-cladding boundary. Second,
the permittivities are assumed to be slowly varying functions of r over a distance of several
wavelengths. This is equivalent to assuming €i(r) = 0. For the case of either an isotropic or

a uniaxial graded-index fiber, €;(r) = €z(r), application of the second assumption to egs. (5)



results in the following equations for E; and h,

E]+ %E; + A%y (r)E, =0, (7a)
1
h;’ + ;h; 4+ Azgg('l‘)hz = 0, (7b)

where g;(r) and g(r) are given by

es(r m?
g(r) = %E-’% [51(") - "2] T A2, (8a)
m2
g2(r) = e1(r) — k2 — ATrT. (8b)

For the case of a biaxial graded-index fiber, €1(r) # €2(r), the previous assumption does
not cause egs. (5) to uncouple since p1(r) and po(r) are not identically equal to zero.

Egs. (7) can be solved easily using the well known Wentzel-Kramers-Brillouin (WKB)
solution method [5], [6], (15]. The solutions.obtained using the WKB method are not
solutions of the full vector problem given by eqgs. (5) but rather they are solutions of a
related scalar problem given by egs. (7). However, the vector solutions can be obtained by
renumbering the solutions to the scalar problem {9].

For the case of a biaxial graded-index fiber the WKB solution method can be applied
blindly to egs. (5) and at most only two terms in the WKB expansion can be determined.
Nevertheless, the term representing the phase of the WKB solution is not a well behaved
function and therefore it is not reasonable to assume the WKB solution method remains
valid under this condition. In order to solve Maxwell’s equations for the case of a biaxial
graded-index fiber an alternate formulation must be used.

Instead of eliminating the transverse field components from egs. (3), eliminate the radial

field components E, and H, and write the remaining four equations as a system of four
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first-order differential equations in terms of the tangential components [14]. From the two
algebraic equations, egs. (3a) and (3b), the radial components can be written in terms of

the tangential components as

1 |[m

Eo = deon [7H’ e H‘“], (Be)
1 |m

S ) e

Using egs. (9), the four remaining equations can be written as

dE,  .mk J 2
T j o h; + ._96_1(61 — k*)(shy), (10a)
d o J 2 2 K
d;( E,) = o (m* — e18°)h, + 7 o (she) (108)
dh, .mK j
== = E, - i(ez — k?)(sEg), (10¢)
d ] MK
a—;(sh¢) = —;(m2 - essz)E, - ]T(SE¢) (10d)

where a change of variable from p to a normalized radius s = kop has been made. Egs. (10)

can be written in matrix form as

du 1
=" ;A(s)u, (11a)
where
u=(E, sEy h, shy)' (11b)
and
0 0 - L(ey - x?)
2(m?2 — 2 me
A(s) = 0 O (m* —ass) Ty (11c)
jmk —j(e2 — &%) 0 0
—j(m? - e3s?) —jmk 0 0

For the special case of meridional modes, m = 0, egs. (10) can be separated into two

systems each containing two equations. The first set corresponding to transverse magnetic



modes (TM) can be written in matrix form as

d“:m - %A(TM)(s)u(TM) (12a)
where
o™ = (E, shy)T (12b)
and
AT () = (jei.& ;;L(flo— Kz)) (120)

The second set corresponding to transverse electric modes (TE) can be written as

du™® 1
— L A(TE)[ (\o(TE)
I sA (s)u (13a)
where
u™® = (h, sE,)T (13b)
and

ATE)(g) = ( 0 —j(e2 - Kz)) (13¢)

—js? 0
The only known exact solutions of the matrix equation are for the cases of an isotropic and
a uniaxial step-index fiber [12], [14). These solutions are identical to the exact solutions of
the wave equation formulation.

It is not readily apparent that the matrix equation is easier to solve than the wave
equation formulation. As was mentioned earlier, a series solution for the wave equation
formulation is possible only when the equations are uncoupled. However, for the meridional
modes of a graded-index fiber no series solution will be convergent for the entire core region.
In contrast, the system matrix A(s) does not have any poles in the core region and therefore

the series solutions will be convergent in the entire core region.
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While the form of A(s) guarantees a convergent series solution the series may not con-
verge rapidly enough to use it in numerical computations. An alternate solution method is
asymptotic partitioning of systems of equations [16]. This method involves the transforma-
tion of a system of linear first-order differential equations into a system of equations whose
solutions are easier to find. The form of the solution method presented in the next section
is based on the expansion of the a general system matrix A(z) in terms of positive powers

of z, in contrast to the usual form where the expansion is in terms of powers of 1/z (see

e.g. [16])

II1. Matrix Partitioning
Consider the following system of N linear differential equations

du 1
i ;A(z)u(z) asz — 0 (14)

where u is a column vector, g is an integer greater than or equal to 1 and A(z)isa N x N
matrix given by

A(z) = iAnZ" as z — 0. (15)

n=0

It is possible to simplify this system of equations by transforming them into some special

differential equations whose solutions are easier to find. Let
u(z) = P(z)v(z) (16)

where v is a column vector and P(z) is a N x N nonsingular matrix. Using eq. (16), the

original problem given by eq. (14) can be transformed into

ﬂr_
dz

-2 B(z)v(z) (17)

x?
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where
B(z) = P(z)™} [A(z)P(z) _ 20 ‘“;i”)] (18)
or more conveniently
zqg}:—) — A(2)P(z) - P(2)B(2). (19)

The matrix P(z) is chosen so that B(z) has a convenient form, either diagonal or Jordan
ca..nonica.l form. If B(z) has either of these forms the solution of the transformed system
for v is trivially obtained. For example, if A(z) is a constant matrix then P(z) is also a
constant matrix and eq. (18) is simply a similarity transformation. This implies P(z) is
chosen so that B(z) is either the diagonal or the Jordan canonical form of A(z). In general,
when A(z) is not a constant matrix P(z) is not a constant matrix and it is not clear from
either eq. (18) or (19) how P(z) should be chosen so B(z) has the desired form.

- In order to develop a procedure to find B(z) and P(z) start by expanding them as the

following Taylor series

B(z) = Z B,z" asz—0,
n? (20)
P(z) = Z P,z™ asz — 0,

n=0

where in general By is a Jordan canonical matrix and B,, is a diagonal matrix. Substituting

eqs. (20) into eq. (19) and equating like powers of z gives
APy —PoeBo =0 (21)
for z° and

n
(n— g+ 1)Pn_gi1 = 3 (APa—PiBoy) (22)
=0
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for z", n > 1, where P,_,4; = 0 for n — g+ 1 < 0. Eqgs. (21) and (22) define an iterative
procedure to find the coefficient matrices for the series expansions of B(z) and P(z) so that

either eq. (18) or (19) is satisfied. Eq. (21) can be rewritten as
Bo = P;'AP (23)

which implies Py is chosen so that By is either the diagonal or Jordan canonical form of

Ao. With some algebraic manipulations eq. (22) can be written more conveniently as
BoW, - W; By = (n -q+ l)wn—q+l +B,-F, (24)

where the matrices W,, and F,, are defined as

W, =P;'P, (25)
and
n-1
Fn =Py A.Po+P;' > (An P - PBny), (26)

=1

Notice that the unknowns in eq. (24) are the matrices B,, and W,, and that the matrices
W,._q+1 and F,, depend solely on matrices found in previous iterations. Since by definition
B, is a diagonal matrix eq. (24) can be solved easily for B, and W,, by setting the diagonal
elements of B, and F,, equal to each other and then solving for W, from what remains of
eq. (24). Since the form of By is known in advance an explicit solution in terms of By and
F,, can be found for W,

Consider the special case where By is a diagonal matrix and ¢ = 1. This corresponds
to the form of the matrix differential equation (11) which we want to solve. While it is not
obvious from eq. (11c) that By will be a diagonal matrix, it will be shown later that this is

indeed the case.
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When By is a diagonal matrix the expression BoWy, — W,Bg has zeroes along it’s
main diagonal and does not depend upon the elements along the main diagonal of W,.

The solution to eq. (24) can be easily written as

(Fn),','a i=7;
B" lJ = i . 27
(Be) { 0, i # 7, &)

and

0 i=j;

(Wa);; = { i (Fa)y i# 4, (28)

where );, i = 1,2,..., N are the eigenvalues of Ag. One potential problem exists with this
solution. If \; — A; —n =0 and (Fu);; #0 for some particular values of i, j and n then it
may not be possible to find Wy and therefore a solution may not be possible.

Consider a biaxial graded-index fiber with permittivity profiles of the power law type
given by

&(r) = (1 - 244r™) i=1,2,3 (29)

where ¢; = €(0) and A; = (e; — €.)/2¢;. Since the choice of the coordinate system requires
€1(0) = €2(0), the definition of A; requires that A; and A, be equal. Then, for this choice
of permittivity profiles €;(r) and e(r) are not equal only when a; # az. The case of a
step-index fiber exists as a special case to the power law profiles in the limit as a; — oo, or
equivalently by setting A; = 0.

Now let us solve the matrix equation for the transverse modes in a biaxial fiber where
the permittivity profiles are parabolic. The relative permittivity profiles can be written in

terms of the normalized radius s = kop = (koa)r as

ei(s) = ei(1 - 2A78%) i=1,2,3 (30)
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where A® = A;/(koa)?. Strictly speaking this choice for €;(s) does not produce a biaxial
fiber since by definition ¢; = €; and A = AY. Since €;(s) and €z(s) do not appear together
in the matrix equations for the transverse modes, egs. (12) and (13), it is not necessary to
set €, equal to ¢;. However, in the final result it is necessary to replace ¢z by € and either
set A} = 0 and obtain the solution for a biaxial fiber where ¢€;(s) is constant and €2(8) is
parabolic or set AJ = 0 and obtain the solution for the case where €;(s) is parabolic and
€2(8) is constant. The first term in the series expansions for A(™)(s) and A(TE)(4) is given

by

i= (5 5) (310)

T_{-gl-(el—nz), i=TM;
—j(ez — k%), i=TE.

where

(31b)

Since the two eigenvalues of Ag are both equal to zero it is not possible to find a non-zero
P, such that Bpis a diagonal matrix. Instead Po must be chosen so that By is a Jordan

canonical matrix. For A as given by eq. (31) choose Py as

T 0
b= (7 °) -
so that

Bo = (g é) (33)

is a Jordan canonical matrix. After four iterations, the solution for the TM case is found

to be:
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. k2
E, = éikfvlcl{l _BMmy
3

€1 4
ea\2khy | €3 a0k 2(a%?) g
+[(;:) B e s 0" . (34a)
e kj 2 e3\2kxny | €3 okin] .o | Batens
= - —_— —_— —_ AN S — AR ¥ « b
she Cl{el 9 ° (el) 6 Tl " ' (348)

where k%, = &, — x? and C is a constant. The solution for the TE case is

'k2 k4 o:'
he = ~ikRsCa |1 - B2+ b ] st (350)
4
SEy = ~C; [kN._, . ’“11:5234]62"34. (35b)

where k3, = €2 — &%

Now consider the solution of the matrix equation for hybrid modes. For all permittivity

profiles the first term in the series expansion of A(s) is
0 0 -i%E
J

Ao = (36)

0 0 jm?
€
jme  —jk%, 0
—jm? —jmk 0

o © n|§ mba;

where k%, = ¢ k2 and the eigenvalues of Ag are £m, m # 0. Since the eigenvalues are
repeated, in general, the choice for Py should at best cause Bo to be a Jordan canonical
matrix. This is the only restriction placed on the form of Py by the solution method. Any
P, which causes By to be a Jordan canonical matrix can be expected to result in a valid
solution. Since it is possible for several different choices of Py to satisfy this condition,
conceivably there may exist several possible mathematical solutions to the problem.

Since the solution for a step-index fiber exists as a special case of the solution for a

graded-index fiber it is reasonable to choose P based on the knowledge of the exact solution
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for a step-index fiber. From the wave equation formulation we know that for a step-index
fiber the differential equations for E, and h, become uncoupled and the resulting equations
can be solved independently of each other. This suggests that for the case of a step-index
fiber P(s) and hence Pg should have a form such that two of the four elements in the
solution of the vector v(s) should contribute to E, but not h, while the remaining two

elements contribute to h, only. If Py is chosen as
ki1 0 k12V1 0
p mk jm mk —jm (37)
T 0 k31 0 k}\n

—jme; MK  jme;  mK

then for a step-index fiber E, and h, are at least uncoupled for the lowest order solution
where P(s) = Po.

Using P, given by eq. (37) By is given by

m 0 0 0
0 m 0 0

By = 0 0 -m 0 (38)
0 0 0 -m

Since By is a diagonal matrix, instead of a Jordan canonical matrix as was the case for the
transverse modes, eq. (28) can be used to find W,,. Recall that this solution for W,, may
cause some elements of W,, to be undefined. In particular, for this problem the elements
in the third and fourth columns of both W3, and P are undefined when m =1, 2,...,k.
However, due to the structure of the various matrices and the order of multiplication in the
definitions of W,, and F,, these undefined elements remain in the third and fourth columns
of all resulting matrices. In the final solution these undefined elements can be dropped since
they contribute only to the two solutions which are not finite at s = 0.

With P, and By given by egs. (37) and (38) respectively, the general form of the solution
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to eq. (11a) which is finite at s = 0 is given by

E, Pu(s) Prafs)
E P P. CyeM(®)
shg | _m 21(8)  Pr2(s) (18'\ ) (390)
h. Psi(s) Psa(s) | \ Cae™()
shy Py(s) Paa(s)
where
N
Pi(s)= Y (Pa)ys"  i=123,4 j=12 (395)
n=0
N o
Ai(s) = Z (Bn)gi‘; i=1,2 (39¢)
n=1

and N is the number of iterations.
For a biaxial graded-index fiber where €;(s) and €3(s) have a parabolic profile given by
eq. (30) and €(s) is a constant, after two iterations the following expressions are found for

Xi(s) and P;;(s)

M(s) =~ g[Sl - )+ (28] (40)
2
Ma(e) = - [(a - @) = =5 (289)], (408)
Pii(s) = (e — k%) + 4—"17,11-—_*_—1—) [Z—j(el - r%)? - m2n2(2A?)] %, (40c¢)
Puale) = =3 55 (23 (28D (40d)

- r Bley — K2
Py(s) = mk+ 4(m+1){el(€1 k%)

ﬁe:—(f—i—zz [(61 - k%) +(m+ 1)61] }32 ) (40¢)
Ppa(s) = jm - Z(Tnj+—l—){(fl - Kz)
"::(fiz_) [(m + 1)/{2 — (&1 — Kz)] }32 ) (40f)
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Pule) =~ g 2 2007 (409)
Pus) = (0 = ) + s (0 — 1) - mha 2812, (40h)
Pula) = —ime 4 s [ - o) - P a0
Puals) = mo g (e - o) - T ) (405)

This should not be considered an accurate solution for u(s) since the term A3 does not
appear anywhere in eqs. (40). This solution is identical to the solution obtained after two
iterations for a biaxial graded-index fiber where ¢;(s) has a parabolic profile and €;(s) and
€3(s) are constant. Since AY only appears in the matrix A4 at least four iterations must be
performed in order to obtain the effects of a non-constant es(s).

The solution for a uniaxial or a step index-fiber can be obtained from egs. (40) by
setting AY( .and A?) equal to zero. Notice that setting A{ equal to zero causes Pia(s)
and Ps(s) to be set equal to zero. This corresponds to the decoupling of the differential
equations which occurs in the wave equation formulation for the case of a step-index fiber.

From numerical results, it appears that the functions );(s) and P;;(s) given in eqgs. (40)
are monotonic. This indicates that the solutions for the various field components will not
have an oscillatory behavior. Consequently, for a given value of m only the mode with the

lowest cutoff frequency will be found.
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IV. Numerical Results

As was previously stated the solution for the biaxial graded-index fiber given by eqgs. (40)
does not include the effects of a non-constant e3(s). Obtaining a more accurate solution
requires performing more than four iterations. Instead of deriving algebraic equations for the
elements of F,;, B,,, W and P,. the values of these matrices can be determined numerically
if the values of m, k and kpa are known in advance. One potential difficulty with this method
comes from the undefined elements in W,, and P,,. Since these elements contribute only to
the solutions which are unbounded at s = 0 they can be set equal to zero without affecting
the final solution. The ability to do this appears to depend upon the form of A(s) and the

ordering of the eigenvalues of Ao in Bo.

Asymptotic partitioning was used to solve the matrix equation for several types of
fibers. For the case of a step-index fiber a comparison was made between the propagation
constants determined using asymptotic partitioning and those determined using the exact
solution. For transverse modes the asymptotic solutions were in poor agreement with the
exact solutions. Since for transverse modes in a step-index fiber asymptotic partitioning
produces a series solution, the poor agreement can be attributed to using too few terms
in the series expansion of the exact solution. For hybrid modes there was a much better
agreement between the asymptotic solutions and the exact solutions. In particular, for a
step-index fiber the asymptotic and the exact solutions produced almost identical values

for the propagation constants of the HE,; mode.

Figure 2, 3 and 4 are plots of the normalized propagation constant for the HEq,, HE,;

and HEs, modes in a biaxial graded-index fiber where ¢;(s) and €3(s) have a parabolic
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profile and ¢,(s) is a constant.

V. Conclusions

For both the wave equation formulation and the matrix equation, exact solutions are known
only for the cases of an isotropic step-index fiber and a uniaxial step-index fiber. For
isotropic and uniaxial graded-index fibers the wave equation formulation can be solved
approximately using WKB analysis. For a biaxial graded-index fiber WKB analysis can not
be used on the wave equation formulation. Asymptotic partitioning can be used to solve
the matrix equation for all types of permittivity profiles. For meridional modes asymptotic
partioning appears to generate the series solution for the matrix differential equation. For
hybrid modes, of the solutions produced by asymptotic partitioning have a form such that
for a given value of m only the mode with the lowest cutoff frequency can be found. A nice

feature of the asymptotic solutions is that they remain valid all the way down to cutoff.



Figure 1

Geometry of the fiber
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Figure 2 Normalized propagation constant for the HE;; mode in a biaxial graded-index
fiber where €,(s) and €3(s) have the parabolic profile of eq. (30) and €(s) is a
constant.
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Figure 3 Normalized propagation constant for the HE,; mode in a biaxial graded-index
fiber where ¢;(s) and €3(s) have the parabolic profile of eq. (30) and €2(s) is a

constant.
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Figure 4 Normalized propagation constant for the HE;, mode in a biaxial graded-index

fiber where ¢;(s) and €a(s)

constant.

have the parabolic profile of eq. (30) and €2(8) is a
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Figure Captions

Figure 1 Geometry of the fiber

Figure 2 Normalized propagation constant for the HE,; mode in a biaxial graded-index
fiber where ¢;(s) and e3(s) have the parabolic profile of eq. (30) and e2(s) is a
constant.

Figure 3 Normalized propagation constant for the HE,; mode in a biaxial graded-index
fiber where €;(s) and e3(s) have the parabolic profile of eq. (30) and €3(s) is a
constant.

Figure 4 Normalized propagation constant for the HE3; mode in a biaxial graded-index
fiber where €,(s) and e3(s) have the parabolic profile of eq. (30) and €3(s) is a

constant.



